APPROVED

SWRE 18001: Software Engineering

Module Details

Module Description: Students completing this module will be able to select and implement appropriate designs to solve various problems using software engineering

principles.

Module Code: SWRE 18001

Full Title: Software Engineering

Valid From:: Semester 1 -2019/20 (June 2019)

Language of Instruction: English
| Duration: | 2 Semesters |
[Credits:: [10 |
| Module Owner:: | Michelle Graham |
| Departments: | Unknown |

Page 1 of 6

Module Learning Outcome

On successful completion of this module the learner will be able to:

Module Learning Outcome Description

MLO1 Discuss and apply the principles of Software Engineering.

MLO2 Manage the quality of the software development product.

MLO3 Identify and implement appropriate Design Patterns for a particular problem.

MLO4 Specify and implement the appropriate data structures and algorithms for a range of problems.
MLO5 Analyse the space and time efficiency of selected algorithms and data structures.

MLO6 Develop recursive design and implementation solutions.

Pre-requisite learning

Module Recommendations

This is prior learning (or a practical skill) that is strongly recommended before enrolment in this module. You may enrol in this module if you have not acquired the recommended learning but
you will have considerable difficulty in passing (i.e. achieving the learning outcomes of) the module. While the prior learning is expressed as named DkIT module(s) it also allows for learning (in
another module or modules) which is equivalent to the learning specified in the named module(s).

No recommendations listed

Page 2 of 6

Module Indicative Content

Software Engineering as a profession.
Evolution, principles and practices.

Software Quality
Quality Models, Quality Plan, Metrics, Refactoring, Design Principles

Design Patterns
Common Design partterns including Singleton, Facade, Observer ,Proxy etc. UML

Data Structures
Specification, application and implementation

Algorithm Design and Analysis
Design and implementation of common searching and sorting algorithms.

Efficiency analysis
Time and space analysis

Recursion
Recursive design and implementation

Module Assessment

Assessment Breakdown %
Course Work 60.00%
Final Examination 40.00%

Module Special Regulation

Assessments

Full Time On Campus

Course Work

Assessment Type Written Report % of Total Mark 10
Marks Out Of 0 Pass Mark 0
Timing n/a Learning Outcome 1,2
Duration in minutes 0

Assessment Description
Students will prepare a technical report on a software engineering topic.

Assessment Type Class Test % of Total Mark 10
Marks Out Of 0 Pass Mark

Timing n/a Learning Outcome

Duration in minutes 0

Assessment Description
Implement Design Patterns.

Assessment Type Class Test % of Total Mark 10
Marks Out Of 0 Pass Mark 0
Timing n/a Learning Outcome 4,6
Duration in minutes 0

Assessment Description
Implement data structures and algorithms

Assessment Type Project % of Total Mark 30
Marks Out Of 0 Pass Mark 0
Timing n/a Learning Outcome 24,6
Duration in minutes 0

Assessment Description
Using a case study students will specify non functional requirements and implement a partial solution to same.

| No Project

| No Practical

Final Examination

Assessment Type Formal Exam % of Total Mark 40
Marks Out Of 0 Pass Mark 0
Timing End-of-Semester Learning Outcome 12,45
Duration in minutes 120

Assessment Description
Writen exam covering theory from all aspects of the course.

Part Time On Campus

Course Work

Assessment Type Written Report % of Total Mark 10
Marks Out Of 0 Pass Mark 0
Timing n/a Learning Outcome 1,2
Duration in minutes 0

Assessment Description
Students will prepare a technical report on a software engineering topic.

Assessment Type Class Test % of Total Mark 10
Marks Out Of 0 Pass Mark

Timing n/a Learning Outcome

Duration in minutes 0

Assessment Description
Implement Design Patterns.

Assessment Type Class Test % of Total Mark 10
Marks Out Of 0 Pass Mark 0
Timing n/a Learning Outcome 4,6

Page 3 of 6

Duration in minutes 0

Assessment Description
Implement data structures and algorithms

Assessment Description
Writen exam covering theory from all aspects of the course.

Assessment Type Project % of Total Mark 30
Marks Out Of 0 Pass Mark 0
Timing n/a Learning Outcome 2,46
Duration in minutes 0
Assessment Description
Using a case study students will specify non functional requirements and implement a partial solution to same.
| No Project
| No Practical
Final Examination
Assessment Type Formal Exam % of Total Mark 40
Marks Out Of 0 Pass Mark 0
Timing End-of-Semester Learning Outcome 1,2,4,5
Duration in minutes 120

Reassessment Requirement

A repeat examination

Reassessment of this module will consist of a repeat examination. It is possible that there will also be a requirement to be reassessed in a coursework element.

Page 4 of 6

Module Workload

Workload: Full Time On Campus

Workload Type Contact Type Workload Description Frequency Average Weekly Learner Hours
Workload
Lecturer-Supervised Learning | Contact No Description Every Week 1.00 1
(Contact)
Practical Contact No Description Every Week 2.00 2
Directed Reading Non Contact No Description Every Week 2.00 2
Independent Study Non Contact No Description Every Week 3.00 3
Total Weekly Learner Workload 8.00
Total Weekly Contact Hours 3.00
Workload: Part Time On Campus
Workload Type Contact Type Workload Description Frequency Average Weekly Learner Hours
Workload
Practical Contact No Description Every Week 2.00 2
Lecturer-Supervised Learning | Contact No Description Every Week 1.00 1
(Contact)
Directed Reading Non Contact No Description Every Week 2.00 2
Independent Study Non Contact No Description Every Week 3.00 3
Total Weekly Learner Workload 8.00
Total Weekly Contact Hours 3.00

Page 5 of 6

Module Resources

Recommended Book Resources

Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser. (2014), Data Structures and Algorithms in Java, 6th Edition International Student Version. John Wiley &
Sons, Inc., p.720, [ISBN: 978-1-118-808].

Eric Freeman, Elisabeth Robson, Bert Bates & Kathy Sierra. (2014), Head First Design Patterns, 2nd edition. O'Reilly Media, p.694, [ISBN: 0-596-00712-4].
Sommerville. Software Engineering, 10th Edition.
Martin Fowler. Refactoring: Improving the Design of Existing Code,.

Supplementary Book Resources

Dale, Joyce, Weems. (2016), Object Oriented Data Structures using Java, 4th. [ISBN: 978-128408909].
Gary McLean Hall. (2017), Adaptive Code: Agile coding with design patterns and SOLID principles, 2nd. Microsoft Press, [ISBN: 978-150930258].
Kathy Sierra & Bert Bates. (2005), Head First Java, 2nd. O'Reilly Media, p.720, [ISBN: 0-596-00920-8].

This module does not have any article/paper resources

This module does not have any other resources

Page 6 of 6

	SWRE I8001 - Software Engineering

